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Neurons in the cerebral cortex are organized in a well-defined, layered 
structure, with distinct cell types positioned in specific locations. In the 
human brain, the six-layered cortex consists of excitatory cell groups, each 
localized to particular layers. In contrast, glial cells, which serve as support 
cells, are interspersed among neurons, performing various functions such as 
responding to pathological insults and maintaining synaptic balance. Recent 
research has mapped the spatial distribution of individual cell types in the 
middle temporal gyrus—a cortical area involved in language processing—
using brain samples from the Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-
AD). This cohort includes donors across the full spectrum of the disease, 
providing an opportunity to investigate how cellular spatial neighborhoods 
change as the disease progresses. In this work, we developed a spatial point 
process framework to investigate interactions between different cell types. 
We incorporated a stochastic block latent model to capture layer-specific 
interactions and to track how these relationships evolve with increasing 
disease severity. Through simulation studies, we demonstrated the model's 
ability to accurately recover an underlying ground truth block structure and 
quantify the effects of disease, showcasing its potential as a powerful tool for 
understanding cell type interactions during disease progression.

Abstract

• We calculate the interaction between cell type pairs using the multitype L- 
function, which is a scaled version of the multitye K-function. It counts the 
expected number of points of type  within a given distance  of a point of 

type . Mathematically, , where 

 
• Here we show the connectivity matrices from 3 specimens, corresponding 

to the specimen-specific pseudotime at 2, 36, and 76 (range: 0-78).

j r

i Lij(r) = Kij(r)/π

Kij(r) = 1/λj𝔼[number of type j points distance r from a typical type i point] .

Introduction

The block structure is imposed for layered cell types using segregation index, 

defined by Pielou (1977), , where  denotes the 

probability of observing a point with mark ,  denotes the probability that a 

typical point of mark  has its nearest neighbor with mark , and  
for .

S = 1 −
p12 + p21

p1p.2 + p2p.1
pi

i pij

i j p.i = p1i + p2i
i, j = 1,2

Blockstructure of cell types

Simulate the following block and disease effect: 
• Take 20 nodes with two blocks.  
• Simulate 60 connectivity matrices for 30 donors with disease pseudo-time 

equally distributed in . 
• Set  for two pairs of nodes,  for other pairs. 
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Simulation results

• Real dataset is noisy with many missing cell types due to cell die-out. 
• We can have more pairs of cell types with disease effects. How to determine 

the significances of the disease effects? 
• Subclasses are parent classes of supertypes. A natural extension could be a 

hierarchical model that characterizes the interactions at subclass level.

Discussions

• This dataset includes 79 specimens from 34 distinct donors, with each 
specimen associated with both a donor-specific and specimen-specific 
pseudotime, representing a particular stage of Alzheimer's progression. 

• For all supertypes in a given specimen, we classify them into layered and 
non-layered cell types through a comparison of the supertype window area 
to the specimen window area and quadrat count analysis afterwards. 

• Neuronal cells are usually layered while non-neuronal cells are non-layered.

Spatial connectivity matrix

Figure 1. Visualization of neuronal and non-neuronal cell types from a selected specimen. The top three panels  
show subclasses of excitatory, inhibitory, and non-neuronal cell types, while the bottom panels display examples  
of supertypes within selected subclass categories.

We develop a latent Stochastic Blockmodel to capture layer interactions. 
Firstly, assign a membership  to each cell type , 

Then, define a latent block-level connectivity matrix that accounts for layer-
wise interaction between cell types, independent of donor-specific attributes. 

Finally, we relate the latent level to the observation level. 

where  is the donor index for the specimen . Note  is baseline rate,   is 
the block contribution and  is the disease contribution.
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Latent Stochastic Blockmodel

zi ∼ Cat(πi), s.t. πi ∼ Dir(θ)

yijd ∼ Ber(z⊺
i Bzj), B ∈ ℝK×K s.t. 

Xijk ∼ Po(α + βk ⋅ yijdk
+ tdk

⋅ rij) s.t. 

Bij ∼ N(0,1) if i = j Bij ∼ N(−2,1) otherwise

α ∼ N(0,1), β ∼ N(1,1), rij ∼ N(0,1)

Connectivity matrices for the 1st, 15th, and 30th donor. 
We successfully recovered the underlying blocks and disease effects.

Figure 2. Average segregation index of layered and nonlayered  
supertypes

Figure 3. Examples of segregation index  
dynamics along specimen pseudotime

Figure 4. An example of the spatial connectivity matrix  
from a selected specimen (at specimen-pseudotime 36)

Figure 5. Examples of interaction strength changes between  
supertypes along specimen pseudotime


