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We investigate the combinatorial multi-armed bandit problem 
where an action is to select k arms from a set of base arms, 
and its reward is the maximum of the sample values of these k 
arms, under a weak feedback structure that only returns the 
value and index of the arm with the maximum value.  

Summary of our contributions: 
– Novel feedback structure: much weaker than the semi-

bandit, slightly stronger than full bandit. 
– Novel concept: biased arm replacement. 
– Distribution dependent and independent regret bound: 

comparable to the bounds obtained under semi-bandit.

Abstract

Motivation

• Each arm ￼  takes values ￼ . 

• Key idea: Multi-valued arms can be turned into a set of 
binary arms. 

To handle unknown support size: 
– Keep a dynamic counter for known support size. 
– Use a fictitious arm with value 1 for unknown values. 

• Achieves ￼  regret using a PTAS offline oracle: 

Xi vi,0 = 0 < vi,1 < ⋅ ⋅ ⋅ < vi,si
≤ 1

(1 − ϵ)

Arbitrary distributions with finite support

Take three different sets of distributions with the same support  

–  For ￼ , ￼ , and for ￼ , ￼ . 
–  Low-risk low-reward item: Change first arm to arm with 

small ￼  but large ￼ , ￼  
–  High-risk high-reward item: Change last arm to arm with 

large ￼  but small ￼ , ￼  

Our regret curve closely aligns with that of the CUCB method 
under the semi-bandit setting, indicating that we do not incur 
substantial losses despite receiving much less feedback.

i = 1,2,…,6 pi = 0.2 i = 7,8,9 pi = 0.5

vi 𝑝𝑖 p1 = 0.9

vi 𝑝𝑖 p9 = 0.1

Simulation results• In many real-world applications we make sequential 
decisions…  

–   Online shopping 
–   Digital advertising 
–   Portfolio selection 

• … in a non sequential order 
–  Users may go back and forth on the list 
–  List may not be presented in a one-dimensional order  

(e.g. two-dimensional grids) 
–  User pays attention to a subset of items, and select the 

most valuable one among them to click

Figure 1. Application Scenario: Online Recommendation

Model Analysis: Binary case

Problem Formulation
Consider an agent and a system of ￼  base arms ￼ . 

• At each time step ￼, the agent chooses a subset of items of size ￼ . 

• The agent receives the maximum value of the set and the index achieving this max value as feedback. 

Key challenge: limited feedback. When item ￼  wins with value ￼ , for other competing items ￼ ,  we do not know if ￼  has 
intrinsically lower value, or ￼  was just unlucky (not being paid attention).
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• Each arm is a binary random variable that takes ￼  with probability ￼ . 

• For learning purpose, decompose into two sets of base arms ￼  and ￼ . 

Z = ￼ : Bernoulli random variables with means ￼ . 
V = ￼ : Deterministic with means ￼ . 

In each round an action is played, we obtain information on some base arms and we call them triggered base arms. 

– Warm Up: if the agent knows the ordering of ￼ ’s, the problem reduces to (weighted) cascading bandit. 
– Real Challenge: Generally, we have no information on ￼  if ￼  is not triggered yet. 

Reward function: ￼

• Monotonicity: reward nondecreasing for any ￼  and ￼  

• Relative triggering probability modulated (RTPM) condition: 

– ￼ : triggering probability for arm ￼

– ￼ : triggering probability for arm ￼

vi pi

Zi Vi

{Z1, …, Zn} p1, …, pn
{V1, …, Vn} v1, …, vn
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𝑟𝑆(𝒑, 𝒗) = ∑𝑖∈𝑆
𝑣𝑖𝑝𝑖∏𝑗∈𝑆,𝑗<𝑖
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𝑝𝑖 𝑣𝑖

𝑞𝒑,𝑆
𝑖 = ∏𝑗<𝑖

(1 − 𝑝𝑖) 𝑍𝑖

~𝑞𝒑,𝑆
𝑖 = 𝑞𝒑,𝑆

𝑖 ⋅ 𝑝𝑖 𝑉𝑖

• Key idea: pretend ￼  is triggered before ￼  is observed. 

• For any arm with unknown value ￼ , replace its parameters s.t. 

The estimates are biased, yet achieved the purpose. 
–   Distribution dependent regret 
–   Distribution independent regret 

Zi vi

vi

New Technique: Biased arm replacement

𝑟𝑆(𝒑, 𝒗) − 𝑟𝑆(𝒑′￼, 𝒗′￼) ≤ 2∑𝑖∈𝑆
𝑞𝒑,𝑆

𝑖 𝑣′￼𝑖 𝑝𝑖 − 𝑝′￼𝑖 + ∑𝑖∈𝑆
~𝑞𝒑,𝑆

𝑖 |𝑣𝑖 − 𝑣′￼𝑖 |  

(pi, vi) → (p′￼i, v′￼i) : v′￼i = 1, and p′￼i = pi ⋅ vi

O((k /Δ)log T )
O( mkT log T)

Reg(𝑡) = Δ𝑆𝑡
≤ (𝑟𝑆𝑡(𝒑̄𝑡, 𝒗̄𝑡) − 𝑟𝑆𝑡(𝒑′￼𝑡, 𝒗′￼𝑡)) + (𝑟𝑆𝑡(𝒑′￼𝑡, 𝒗′￼𝑡) − 𝑟𝑆𝑡(𝒑, 𝒗))

estimation error replacement error
Both can be bounded similarly by applying the RTPM

Xi → {Xi, j | j = 0,1,…si} s.t. Xi
d= max

j
Xi, j

O (k∑
i

si

Δi
min

log T)

vi = 0.1 * i for i = 1,2,…,9.

Figure 2. Regret for our algorithm and benchmarks used for comparison, 
for different distributions of arm outcomes.


